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Leveraging Power Grid Topology in Machine
Learning Assisted Optimal Power Flow
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Abstract—Machine learning assisted optimal power flow (OPF)4
aims to reduce the computational complexity of these non-linear5
and non-convex constrained optimization problems by consigning6
expensive (online) optimization to offline training. The majority of7
work in this area typically employs fully connected neural networks8
(FCNN). However, recently convolutional (CNN) and graph (GNN)9
neural networks have also been investigated, in effort to exploit10
topological information within the power grid. Although promising11
results have been obtained, there lacks a systematic comparison12
between these architectures throughout literature. Accordingly,13
we introduce a concise framework for generalizing methods for14
machine learning assisted OPF and assess the performance of a15
variety of FCNN, CNN and GNN models for two fundamental16
approaches in this domain: regression (predicting optimal gen-17
erator set-points) and classification (predicting the active set of18
constraints). For several synthetic power grids with interconnected19
utilities, we show that locality properties between feature and target20
variables are scarce and subsequently demonstrate marginal utility21
of applying CNN and GNN architectures compared to FCNN for a22
fixed grid topology. However, with variable topology (for instance,23
modeling transmission line contingency), GNN models are able to24
straightforwardly take the change of topological information into25
account and outperform both FCNN and CNN models.26

Index Terms—OPF, graph theory, neural networks.27

NOMENCLATURE28

Functions and operators29

Φ, Ψ OPF operators that map grid parameters to optimal30

values of the primal variables and both primal and31

dual variables, respectively.32

F OPF function introduced to simplify notation of the33

related operator whereby only grid parameters vary.34

f Objective function of a particular OPF problem.35

l Loss function used to optimize neural network36

parameters, θ.37

Sets38

A Set of active inequality constraints (those satisfied39

with equality at the optimal point).40
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CE, CI Full sets of equality and inequality constraints for a 41

particular OPF problem, respectively. 42

FΦ Set of feasible points for the optimization variables. 43

M Full set of neural network models for which predic- 44

tive performance is assessed. 45

N , E Sets of nodes (vertices) and edges that define an 46

undirected graph, G, respectively. 47

V Set of violated inequality constraints associated with 48

a vector of optimization variables, y. 49

Ω Abstract set representing the OPF operator domain. 50

σ Set of hyperparameters used to define neural net- 51

work architectures. 52

θ Set of neural network parameters optimized during 53

the model training process. 54

Variables 55

Pg, Pl Power injection and withdrawal for a particular gen- 56

erator and load, respectively (active power compo- 57

nents). 58

Vm Bus voltage magnitude. 59

x Vector of grid parameters (e.g. active and reactive 60

power components of loads). 61

y Vector of primal variables (e.g. voltage magnitudes 62

and active power component of generator injec- 63

tions). 64

z Vector of dual variables (Lagrangian multipliers) of 65

the associated equality and inequality constraints. 66

Zij Impedance of transmission line between bus i and 67

bus j. 68

I. INTRODUCTION 69

O PTIMAL power flow (OPF) is an umbrella term for a 70

family of constrained optimization problems that govern 71

electricity market dynamics and facilitate effective planning and 72

operation of modern power systems [1, p. 514]. Classical OPF 73

(AC-OPF) formulates a non-linear and non-convex economic 74

dispatch model, which minimizes the cost of generator schedul- 75

ing subject to either (or both) operation and security constraints 76

of the grid [2]. By virtue of competitive efficiency, optimal 77

schedules are typically found using interior-point methods [3]. 78

However, the required computation of the Hessian (second-order 79

derivatives) of the Lagrangian at each optimization step renders 80

a super-linear time complexity, thus large-scale systems can be 81

prohibitively slow to solve. 82

This computational constraint gives rise to several challenges 83

for independent system operators (ISOs): (1) variable inclusion 84
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Fig. 1. Strategies for solving OPF with interior-point methods: standard (left),
warm-start (center) and reduced (right) problems. x and y are the vectors of grid
parameters and optimization variables, respectively, f is the objective function,
CE and CI denote the sets of equality and inequality constraints, and A ⊆ CI
is the active subset of the inequality constraints. Typical varying arguments are
highlighted in orange, whilst remaining arguments are potentially fixed.

of certain generators (i.e. unit commitment) invokes binary85

variables in the optimization model, thereby forming a mixed-86

integer, non-linear program (known to be NP-hard), exacerbat-87

ing computational costs [4]; (2) the standard requirement for88

operators to satisfy N−1 security constraints (i.e. account for89

all contingency events where a single grid component fails)90

renders a much larger-scale problem, increasing the time com-91

plexity even further [5]; and lastly (3) modeling uncertainty92

in the supply-demand equilibrium induced by stochastic re-93

newable generation requires methods such as scenario based94

Monte-Carlo simulation [6], which necessitates sequential OPF95

solutions at rates unattainable by conventional algorithms.96

To overcome these challenges, ISOs often resort to simplified97

OPF models by utilizing convex relaxations [7] or lineariza-98

tions [8], [9] such as the widely adopted DC-OPF model [10].99

With considerably less control variables and constraints, DC-100

OPF can be solved very efficiently using interior-point or sim-101

plex methods [11, p. 224]. However, as DC-OPF solutions are102

in fact never feasible with respect to the full problem [12],103

set-points need to be found iteratively by manually updating104

the solution until convergence [13, p. 14] – hence DC-OPF is105

predisposed to sub-optimal generator scheduling.106

In practice, ISOs typically leverage additional information107

about the grid in attempt to obtain solutions more efficiently.108

For instance, given the (reasonable) assumption that comparable109

grid states will correspond to neighbouring points in solution110

space, one can use the known solution to a similar problem111

as the starting value for the optimization variables of another112

problem – a so-called warm-start (Fig. 1, center panel) –, ren-113

dering considerably faster convergence compared to arbitrary114

initialisation [14]. Alternatively, ISOs can capitalize on the115

observation that only a fraction of inequality constraints are116

actually binding at the optimal point [15], hence one can remove117

a large number of constraints from the mathematical model118

and formulate an equivalent, but significantly cheaper, reduced119

problem [16] (Fig. 1, right panel). Security risks associated with120

the omission of violated constraints from the reduced problem121

can be mitigated by iteratively solving the reduced OPF and122

updating the active set until all constraints of the full problem123

are satisfied [17].124

A. Machine Learning Assisted OPF125

A compelling new area of research borne from the machine126

learning community attempts to alleviate reliance on subpar OPF127

Fig. 2. Flowchart of the warm-start method (green panel) combined with a
NN regressor (orange panel). For clarity, default arguments of the OPF operator
are omitted.

frameworks by fitting an estimator functions on historical data. 128

The estimators are typically neural networks (NNs) owed to their 129

demonstrated ability to model complex non-linear relationships 130

with negligible online computation [18]. This makes it possible 131

to obtain predictions in real-time, thereby shifting the compu- 132

tational expense from online optimization to offline training – 133

and the trained model can remain sufficient for a period of time, 134

requiring only occasional re-training. 135

Most of the NN-based methods for machine learning assisted 136

OPF can be generalized as one of two approaches: 1) end-to-end 137

(or direct) models, where an estimator function is used to learn 138

a direct mapping between the grid parameters and the optimal 139

OPF solution; and 2) hybrid (or indirect) techniques – a two-step 140

approach whereby an estimator function first maps the grid 141

parameters to some quantities, which are subsequently used 142

as inputs to an optimization problem to find a (possibly exact) 143

solution. Based on the actual target type, these methods can be 144

further categorized depending on the type of predicted quantity: 145

regression or classification. 146

1) Regression: By inferring OPF solutions directly, end-to- 147

end regression methods bypass conventional solvers altogether, 148

offering the greatest (online) computational gains [19]. How- 149

ever, since OPF is a constrained optimization problem, the 150

optimal solution is not necessarily a smooth function of the 151

inputs: changes of the binding status of constraints can lead 152

to abrupt changes of the optimal solution. Since the number of 153

unique sets of binding constraints increases exponentially with 154

system size, this approach requires training on relatively large 155

data sets in order to obtain sufficient accuracy [20]. Moreover, 156

there is no guarantee that the inferred solution is feasible, and 157

violation of important constraints poses severe security risks to 158

the grid. 159

Instead, one can adopt a hybrid approach whereby the in- 160

ferred solution of the end-to-end method is used to initialize 161

an interior-point solver (i.e. a warm-start), which provides an 162

optimal solution to an optimization problem equivalent to the 163

original one (Fig. 2). Compared to default heuristics used in 164

the conventional optimization method, an accurate initial point 165

could theoretically reduce the number of required iterations 166

(and so the computational cost) to reach the optimal point [21]. 167

However, as discussed in [22], there are several practical issues 168

which could arise, leading to limited computational gain for this 169

technique. 170

2) Classification: An alternative hybrid approach leverages 171

the aforementioned technique of formulating a reduced prob- 172

lem by removing non-binding inequality constraints from the 173

mathematical model. A NN classifier is first used to predict the 174

active set of constraints by either 1) identifying all distinct active 175
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Fig. 3. Flowchart of the iterative feasibility test method (green panel) com-
bined with a NN classifier (orange panel). Â(k) and V(k) are the sets of
predicted active and violated inequality constraints at thek-th step of the iterative
feasibility test, respectively. For clarity, default arguments of the OPF operator
are omitted.

sets in the training data and using a multi-class classifier to map176

the features accordingly [23]; or 2) by predicting the binding177

status of each inequality constraint using a binary multi-label178

classifier [22]. Since the number of active sets increases ex-179

ponentially with system size [24], the latter approach may be180

computationally favourable for larger grids.181

To alleviate the security risks associated with imperfect clas-182

sification, an iterative feasibility test can be employed to rein-183

state violated constraints until convergence, as detailed in [22]184

(Fig. 3). Since the reduced OPF is much cheaper relative to the185

full problem, this approach can in theory be rather efficient.186

B. Contributions187

Both the end-to-end and hybrid techniques for machine188

learning assisted OPF benefit from NN architectures designed189

to maximize predictive performance. Related works typically190

employ a range of shallow to deep fully connected neural191

networks (FCNN). However, convolutional (CNN) [25] and192

graph (GNN) [26]–[27] neural networks have recently been193

investigated to exploit assumed locality properties within the194

respective power grid, i.e. whether the topology of the electricity195

network influences the correlation between inputs and outputs.196

Building on this set of works, our contributions are as follows:197
� We introduce a concise framework for generalizing end-to-198

end and hybrid methods for machine learning assisted OPF199

by characterising them as estimators of the corresponding200

OPF operator or function.201
� We provide a systematic comparison between the afore-202

mentioned NN architectures for both the regression and203

classification approaches.204
� We demonstrate the marginal utility of applying CNN205

and GNN architectures for fixed topology problems (i.e.206

varying grid parameters only for the same topology), hence207

recommend the application of FCNN models for such208

problems.209
� We show that locality properties between grid parameters210

(features or inputs) and corresponding generator set-points211

(targets or outputs) – essential for efficient inductive bias212

in both CNN and GNN models – are weak, which explains213

the moderate performance of these models compared to214

FCNN.215
� We also show that a similar weak locality applies between216

grid parameters and locational marginal prices (LMPs),217

indicating that the applicability of CNN and GNN archi- 218

tectures would face similar challenges if instead used to 219

predict these derived market signals. 220
� We present a set of varying topology problems (i.e. when 221

both grid parameters and network topology are varied), 222

that demonstrate successful utilization of structure based 223

inductive bias through superior predictive performance of 224

GNN models relative to both CNN and FCNN models. 225

It should be noted that, although we address the requirement of 226

accurate predictions for machine learning assisted OPF, feasibil- 227

ity and optimality concerns associated with end-to-end methods, 228

as well as the computational limitation of hybrid methods, 229

remains a challenge for future work. 230

II. METHODOLOGY 231

A. Problem Formulation 232

This work centers on the fundamental form of OPF, without 233

consideration for unit commitment or security constraints (al- 234

though machine learning assisted OPF can be readily extended 235

to such cases [28], [29]). In general, OPF problems can be 236

expressed using the following concise form of mathematical 237

programming: 238

min
y

f(x, y)

s. t. cEi (x, y) = 0 i = 1, . . . , n
cIj(x, y) ≥ 0 j = 1, . . . ,m

(1)

wherex andy are the vectors of grid parameters and optimization 239

variables, respectively, f(x, y) is the objective (or cost) function 240

(parameterized by x), which is minimized with respect to y 241

and subject to equality constraints cEi (x, y) ∈ CE and inequality 242

constraints cIj(x, y) ∈ CI. For convenience, we introduce CE and 243

CI, which denote the sets of equality and inequality constraints 244

with corresponding cardinalities n = |CE| and m = |CI|. For 245

instance, in a simple economic dispatch problem (the focus of 246

this work), x includes the active and reactive power compo- 247

nents of loads, y is a vector of voltage magnitudes and active 248

powers of generators and the objective function is a quadratic 249

or piece-wise linear function of the (monotonically increasing) 250

generator cost curves. Equality constraints include the power 251

balance and power flow equations, whilst inequality constraints 252

impose lower and upper bounds on certain quantities. 253

B. OPF Operators and Functions 254

By formulating the problem in such a manner as (1), one 255

can view OPF as an operator, which maps the grid parameters 256

(x) to the optimal value of the optimization variables (y∗) [30]. 257

In order to introduce a consistent framework, we extend the 258

operator arguments by the objective (f ) and constraint functions 259

(CE and CI), as well as by the starting value of the optimization 260

variables (y0). The value of y0 has a considerable influence of 261

the convergence rate of interior-point methods, and for non- 262

convex formulations with multiple possible local minima, even 263

the found optimum is a function of y0. The general form of the 264



4 IEEE TRANSACTIONS ON POWER SYSTEMS

OPF operator can be written as1:265

Φ : Ω → Rny : Φ
(
x, y0, f, CE, CI

)
= y∗, (2)

whereΩ is an abstract set within which the values of the operator266

arguments are allowed to change and ny denotes the dimension267

of the optimization variables. In the simplest case, only the grid268

parameters vary, whilst most arguments of the OPF operator269

remain fixed. Accordingly, we introduce a simpler notation, the270

OPF function, for such cases:271

FΦ : Rnx → Rny : FΦ(x) = y∗, (3)

where nx and ny are the dimensions of the grid parameters and272

optimization variables, respectively, whilst FΦ is used to denote273

the set of all feasible points, such that y∗ ∈ FΦ. Depending on274

the grid parameters, the problem may be infeasible: FΦ = ∅.275

C. Estimators of OPF Operators and Functions276

Machine learning assisted OPF methods apply either an esti-277

mator operator or function, which both provide a computation-278

ally cheap prediction to the optimal point of the OPF based on279

the grid parameters, i.e. Φ̂(x) = ŷ∗ : ‖ŷ∗ − y∗‖ < ε ∧ T [Φ̂] 
280

T [Φ] and F̂Φ(x) = ŷ∗ : ‖ŷ∗ − y∗‖ < ε ∧ T [F̂Φ] 
 T [FΦ],281

where ‖ · ‖ is an arbitrary norm, ε is a threshold variable and282

T denotes the computational time to obtain the solution.283

1) End-to-End: To learn the optimal OPF solution directly284

from the grid parameters, NNs as regressors can be used, de-285

picted by the following function:286

F̂Φ(x) = NNreg
θ (x) = ŷ∗, (4)

where subscript θ denotes the NN parameters and the superscript287

reg indicates that the NN is used as a regressor. The problem288

dimensionality can be reduced by predicting only a subset of289

the optimization variables – in this case, the remaining state290

variables can be easily obtained by solving the corresponding291

power flow problem [31], given the prediction is a feasible292

point. Optimal NN parameters can be obtained by minimizing293

some loss function between the ground-truth y∗ and prediction294

ŷ∗ of some training set. Typically, the squared L2-norm, i.e.295

mean-squared error (MSE), is used: �(y∗, ŷ∗) = ‖y∗ − ŷ∗‖22. To296

mitigate violations of certain constraints, a penalty term can be297

added to this loss function [20].298

2) Warm-Start: Warm-start approaches utilize a hybrid299

model whereby a NN is first parameterized to infer an approx-300

imate set-point, ŷ0 = NNreg
θ (x), which is subsequently used to301

initialize the constrained optimization procedure resulting in the302

exact solution (y∗):303

Φ̂warm(x) = Φ
(
x, ŷ0, f, CE, CI

)
(5)

= Φ
(
x,NNreg

θ (x), f, CE, CI
)

(6)

= y∗. (7)

1We note that an even more general form of the operator can be defined when
the arguments are mapped to the joint space of the primal and dual variables of the
optimization problem: Ψ : Ω → Rny+nz : Ψ(x, y0, f, CE, CI) = (y∗, z∗),
where z∗ is the optimal value of the Lagrangian multipliers of the equality and
inequality constraints. As locational marginal prices are computed from z∗, this
formalism is useful to construct estimators for learning electricity prices.

Optimal NN parameters can be obtained by minimizing a 304

similar conventional loss function as in the case of the end- 305

to-end approach. However, significant improvement has been 306

demonstrated by optimizing NN parameters with respect to a 307

(meta-)loss function corresponding directly to the time com- 308

plexity of the entire pipeline (i.e. including the warm-started 309

OPF) [32]: �(ŷ0) = T [Φ(x, ŷ0, f, CE, CI)]. 310

3) Reduced Problem: In this hybrid approach, a binary multi- 311

label NN classifier (NNclf
θ ) is used to predict the active set 312

of constraints, and a reduced OPF problem is formulated, 313

which maintains the same objective function as the original full 314

problem: 315

Φ̂red(x) = Φ
(
x, y0, f, CE, Â

)
(8)

= Φ
(
x, y0, f, CE,NNclf

θ (x)
)

(9)

= ŷ∗, (10)

where A ⊆ CI is the active subset of the inequality constraints 316

and Â is the predicted active set. It should also be noted that 317

CE ∪ A contains all active constraints defining the specific con- 318

gestion regime. In the case of a multi-label classifier, the output 319

is a binary vector representing an enumeration of the set of non- 320

trivial constraints, learnt by minimizing the binary cross-entropy 321

(BCE) loss between the ground-truths represented by A and 322

the predicted binding probabilities of constraints defining Â: 323

�(A, Â) = −∑
j cj log ĉj + (1− cj) log(1− ĉj). The output 324

dimension of the multi-label classifier is reduced by removing 325

trivial constraints (those that are always binding or non-binding 326

in the training set) for training. We note that to formulate the 327

subsequent reduced OPF problem, these constraints need to be 328

reinstated before the iterative feasibility test to construct the 329

complete active set. 330

Violated constraints omitted from the reduced model are 331

retained using the aforementioned iterative feasibility test to 332

ensure convergence to an optimal point of the full problem. 333

The computational gain can again be further enhanced via 334

meta-optimization by directly encoding the time complexity 335

into a (meta-)loss function and optimizing the NN weights 336

accordingly [22]: �(Â) = T [Φ(x, y0, f, CE, Â)]. 337

D. Architectures 338

Power grids are complex networks consisting of buses (e.g. 339

generation points, load points etc.) connected by transmission 340

lines, hence can conveniently be depicted as an un-directed 341

graph G = (N , E), where N and E ⊆ N ×N denote the sets 342

of nodes and edges (Fig. 4). Also, G and L will denote the sets 343

of generators and loads, respectively. 344

This formulation motivates the use of NN architectures specif- 345

ically designed to leverage the spatial dependencies within non- 346

Euclidean data structures, i.e. GNN models – the hypothesis 347

being that OPF problems exhibit a locality property whereby 348

the network topology influences to correlation between grid 349

parameters and the subsequent solution. 350

In real power grids, however, a given bus can include multiple 351

generators and loads, which, although can have different power 352

supply and demand, share the bus voltage. To accommodate 353

such characteristics in GNN models straightforwardly, we use a 354
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Fig. 4. Schematic diagram [33] (left) and corresponding graphical representa-
tion (right) for synthetic grid 30-ieee. Orange and green circles denote generator
and load buses, respectively.

transformed version of the original graph: G′ = (N′, E′), where355

each node of the transformed network represents either a single356

generator or a load (i.e. |N ′| = |G|+ |L|), and generators and357

loads belonging to the same bus of the original network are358

interconnected. With this representation of the grid, generator359

real power outputs are obtained as individual nodal features,360

while bus voltage magnitudes are computed as averages of the361

corresponding individual voltages.362

1) FCNN: Fully connected NN models, denoted by MFCNN,363

are used here as baseline. Their input domain is equivalent364

to the raw vector of grid parameters, i.e. active and reactive365

power components of loads: x ∈ R2|L|, while the corresponding366

output vector includes the generators’ injected active power367

and the voltage magnitude at buses comprising at least one368

generator (N gen ∈ N ), i.e. y ∈ R|G|+|N gen|. Since FCNNs are369

defined in an un-structured data space, this baseline theoretically370

lacks sufficient relational inductive bias to efficiently exploit371

any underlying spatial dependencies – this information could be372

learnt implicitly through optimization, but possibly requires a373

highly flexible model with a large amount of data, thus scaling374

poorly to large-scale OPF problems [34]. We investigated two375

FCNN models using one (MFCNN
global-1) and three (MFCNN

global-3)hidden376

layers.377

2) CNN: We explore the utility of augmenting the fully con-378

nected layers with an antecedent sequence of convolutional and379

pooling layers (MCNN
global-4), designed to extract a spatial hier-380

archy of latent features, which are subsequently (non-linearly)381

mapped to the target. A reasonable assumption here is that one382

can leverage spatial correlations within pseudo-images of the383

electrical grid using the weighted adjacency matrix. However,384

convolutions in Euclidean space are dependent upon particular385

geometric priors, which are not observed in the graph domain386

(e.g. shift-invariance), hence filters can no longer be node-387

agnostic and the lack of natural order means operations need388

to instead be permutation invariant. Nevertheless, we validate389

this conjecture using CNNs by combining each load constituent390

of length |N ′| into a 3-dimensional tensor, i.e. x ∈ R2×|N ′|×|N ′|.391

3) GNN: We analyze several GNN architectures whereby the392

weighted adjacency matrix is used to extract latent features by393

propagating information across neighbouring nodes irrespective394

of the input sequence [35]. Such propagation is achieved using395

graph convolutions, which can be broadly categorized as either 396

spectral or spatial filtering [36]. 397

Spectral filtering adopts methods from graph signal pro- 398

cessing: operations occur in the Fourier domain whereby in- 399

put signals are passed through parameterized functions of the 400

normalized graph Laplacian, thereby exploiting its positive- 401

semidefinite property. Given this procedure has O(|N ′|3) time 402

complexity, we investigate four spectral layers designed to re- 403

duce computational costs by avoiding full eigendecomposition 404

of the Laplacian: (1) ChebConv (MCHC), which uses approxi- 405

mate filters derived from Chebyshev polynomials of the eigen- 406

values up to the K-th order [37]; (2) GCNConv (MGCN), which 407

constrains the layer-wise convolution to first-order neighbours 408

(K = 1), lessening overfitting to particular localities [38]; (3) 409

GraphConv (MGC), which is analogous to GCNConv except 410

adapting a discrete weight matrix for self-connections [39]; 411

and (4) GATConv (MGAT), which extends the message passing 412

framework of GCNConv by assigning each edge with relative 413

importance through attention coefficients [40]. 414

By contrast, spatial graph convolutions (a non-Euclidean gen- 415

eralization of the convolution operation found in CNNs) are per- 416

formed directly in the graph domain, reducing the computational 417

complexity whilst minimizing loss of structural information – a 418

byproduct of reducing to embedded space [36]. We investigate 419

SplineConv (MSC) [42] which, for a given node, computes a 420

linear combination of its features together with those of its 421

K-th order neighbours, weighted by a kernel function – the 422

product of parameterized B-spline basis functions. The local 423

support property of B-splines reduces the number of parameters, 424

enhancing the computational efficiency of the operator. Note that 425

all GNN models are named in accordance with the PyTorch 426

Geometric library [43]. 427

Finally, we note that due to the lack of connectivity informa- 428

tion of the grid, conventional FCNN (and CNN) architectures 429

typically fail to adapt efficiently to power system restructuring. 430

In order to obtain sufficient performance with alternative grid 431

topologies (i.e. contingency cases), these models need to be 432

re-trained with appropriate training data. In contrast, GNNs 433

compute localized convolutions in a manner such that the num- 434

ber of weights remains independent of the topology of the 435

network making these models capable to train and predict on 436

samples having different topologies [36]. 437

E. Technical Details 438

1) Samples: To span multiple grid sizes, we built test cases 439

using several synthetic grids from the Power Grid Library [44] 440

ranging from 24 – 2853 buses. To maintain validity of the 441

constructed data sets whilst ensuring a thorough exploration of 442

congestion regimes, we generated 10 k (feasible) fixed topology 443

samples for each synthetic grid by re-scaling each active and 444

reactive load component (relative to nominal values) by factors 445

independently drawn from a uniform distribution, U(0.8, 1.2). 446

To investigate performance of the different NN architectures 447

with varying topology, we also generated 10 k (feasible) samples 448

subject to N−1 line contingency. For each sample, active and 449
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TABLE I
NUMBER OF CHANNELS USED FOR CNN AND GNN ARCHITECTURES. σs AND

σm ARE THE GRID SIZE AND MODEL TYPE BASED SCALING FACTORS.
nn DENOTES THE NUMBER OF NODES OF THE TRANSFORMED

NETWORK AND ny IS THE NUMBER OF OUTPUT VARIABLES

reactive load components were re-scaled as before and a sin-450

gle transmission line was randomly removed from the original451

grid topology. OPF solutions were obtained using Power-452

Models.jl [45] (an OPF package written in Julia [46]) in453

combination with the IPOPT solver [3].454

2) Neural Networks: Our model with the largest number of455

parameters was the three hidden layer fully connected model456

(MFCNN
global-3) that also served as the baseline. The size of each hid-457

den layer was computed through a linear interpolation between458

the corresponding input and output sizes.459

In the case of CNN, each model was constructed using 3× 1460

kernels, 1-dimensional max-pooling layers, zero-padding and a461

stride length of 1.462

For GNN models, we investigated three architecture types:463

(1) the first type included two convolutional layers followed464

by a fully connected readout layer making the original local465

structure non-local (MGNN
global-3); (2) in the second type, only three466

convolutional layers were present, simply treating the features467

available locally at each node as the output (MGNN
local-3); and lastly468

(3) the third type was again a global one extending the above469

local type with a fully connected readout layer (MGNN
global-4). While470

corresponding MGNN
global-3 and MGNN

local-3 models were constructed471

to have an approximately equal number of parameters (details472

discussed below), MGNN
global-4 models had a significantly larger473

number of parameters due to the additional readout layer. For474

MCHC and MSC models, the hyperparameter K was set to 4.475

Since our aim was to compare the predictive performance476

of models with and without topology based inductive bias, the477

single-layer FCNN, CNN and several GNN architectures were478

constructed to have a similar number of parameters for each479

synthetic grid. This required scaling the number of channels of480

the hidden layers of some architectures according to both the481

grid size (σs) and the model type (σm). We applied a simple482

grid search in order to obtain the optimal number of layers, as483

well as the values of parameters σs and σm. The actual number484

of channels used for the CNN and GNN models is presented in485

Table I.486

Edge weights (eij) of the GNN architectures were modeled487

as a function of transmission line impedance, Zij , between the488

i-th and j-th bus. Specifically, we used the following general489

expression between connected buses i and j: 490

eij = exp(−k log |Zij |), (11)

where k is a hyperparameter. Note that k = 0 leads to the 491

application of the simple binary adjacency matrix, while in the 492

case of k = 1 the absolute value of the corresponding element 493

of the nodal admittance matrix is used. 494

For each grid, the generated 10 k samples were split into 495

training, validation and test sets with a ratio of 80:10:10. In 496

all cases, the ADAM [47] optimizer was applied (with default 497

parametersβ1= 0.9 andβ2= 0.999 and learning-rate η = 10−4) 498

using an early stopping with a patience of 20 determined on the 499

validation set. Mini-batch size of 100 was applied and hidden 500

layers were equipped with BatchNorm [48] and a ReLU [49] 501

activation function was used. For each model, statistics (mean 502

and two-sided 95% confidence interval) of the predictive perfor- 503

mance were computed using 10 independent runs. 504

Models were implemented in Python 3.0 usingPyTorch [50] 505

and PyTorch Geometric [43] libraries. Experiments were 506

carried out on NVIDIA Tesla M60 GPUs. In order to fa- 507

cilitate research reproducibility in the field, we have made 508

the generated samples, as well as the code our work is 509

based upon, publicly available at https://github.com/ 510

tdfalc/MLOPF.jl. 511

III. NUMERICAL RESULTS 512

A. Computational Performance of Prediction 513

The fundamental motivation for using NN models to predict 514

OPF solutions is their superior (online) computational perfor- 515

mance compared to directly solving the corresponding AC-OPF 516

problems. In Table II, we compared the average computational 517

times of obtaining exact AC-OPF solutions using the IPOPT 518

solver against inferring approximate solutions using various NN 519

architectures. It is evident that, for all investigated systems, the 520

computational time of the NN models is several orders of mag- 521

nitude smaller than that of solving AC-OPF with conventional 522

methods (note that in Table II, solve times of AC-OPF refer to 523

a single sample, while prediction times of NN models refer to 524

1000 samples). Constrained optimization problems were solved 525

on CPU (Intel Xeon E5-2686 v4, 2.3 GHz), while for the NN 526

predictions we could utilize GPU (NVIDIA Tesla M60). 527

However, as discussed previously, comparing these compu- 528

tational times alone can be misleading: NN predictions are not 529

necessarily optimal or even feasible. There have been several 530

attempts to obtain feasible and possibly optimal estimates of 531

OPF solutions (for instance by using hybrid approaches [29], 532

[31] or introducing penalty terms of constraint violations in the 533

loss function [20]). For all approaches, improving the quality of 534

the predictive performance is fundamental. One apparent way is 535

to increase the training data size significantly. In the following, 536

we investigate the applicability of a more economical approach 537

by using appropriate inductive bias in NN models. 538

https://github.com/tdfalc/MLOPF.jl
https://github.com/tdfalc/MLOPF.jl
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TABLE II
PREDICTION TIME STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) FOR GLOBAL REGRESSION MODELS

TABLE III
MSE STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) OF THE TEST SETS FOR GLOBAL REGRESSION MODELS (FIXED TOPOLOGY)

TABLE IV
NUMBER OF PARAMETERS FOR GLOBAL REGRESSION MODELS (FIXED AND VARYING TOPOLOGY)

B. Fixed Topology539

We begin our analysis by investigating the predictive perfor-540

mance of NN models trained (and tested) using data derived541

from power grids with a fixed topology. In these experiments,542

only the grid parameters were varied within the datasets, while543

all the grid connections were the same among the samples.544

In this setup, FCNN and CNN architectures are functions of545

the grid parameters only, i.e. for regression and classification546

approaches we have NNreg
θ (xi) = ŷ∗i and NNclf

θ (xi) = Âi, where547

xi is the grid parameter vector of the i-th sample. For GNN548

models, besides the grid parameters, the grid topology is also549

passed: NNreg
θ (xi,G) = ŷ∗i and NNclf

θ (xi,G) = Âi, where G550

represents the (fixed) grid topology with corresponding edge 551

weights. 552

1) Regression: For each grid, Table III summarizes the MSE 553

statistics for regression model architectures that encode the 554

targets as global variables. The first column includes the results 555

of our baseline MFCNN
global-3 model, which has the largest number 556

of parameters (Table IV). In the presence of appropriate locality 557

attributes, CNN and GNN models are expected to provide a 558

comparable performance toMFCNN
global-3 with a significantly smaller 559

amount of parameters due to their topology based inductive bias. 560

In order to investigate the predictive performance with and 561

without topological information, we first constructed global 562
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TABLE V
TRAINING TIME STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) FOR GLOBAL REGRESSION MODELS

TABLE VI
MSE STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) OF THE TEST SETS FOR LOCAL AND EXTENDED GLOBAL REGRESSION GNN MODELS

(FIXED TOPOLOGY)

FCNN (MFCNN
global-1), CNN (MCNN

global-4) and GNN (MGNN
global-3) mod-563

els in a manner such that they have a similar number of param-564

eters for each grid (Table IV).565

In general, the regression performance of the investigated566

models (including the baseline) has a week correlation with the567

system size. This indicates that other factors, for instance the568

actual number of active sets, can also play an important role (as569

observed previously in [22]).570

Comparing the CNN and GNN models, we found that in571

most of the cases, GNN models outperform the CNN model.572

An interesting exception is case 57-ieee, where the CNN model573

appeared to perform best. However, we rather consider this as574

an anomalous case, where the reduced error could be attributed575

to the coincidental unearthing of structural information within576

the receptive fields when convolving over the pseudo-image of577

the grid.578

Although GCN is the simplest GNN model we investigated,579

in general it performs similarly to the more sophisticated GAT580

model. Whilst CHC and SC models have similar performance,581

computational efficiencies with respect to the training times of582

CHC (Table V) allude to a better scaling to larger grids.583

The most striking observation is that the single-layer FCNN584

model exhibits exceedingly comparable performance to the best585

GNN models. For several cases, the difference between the586

average MSE values of the best GNN model and the single-layer587

model is not statistically significant and for the two largest588

grids, FCNN even outperforms all GNN models. It is also worth589

mentioning that MFCNN
global-1 has at least one order of magnitude 590

shorter training times than the global GNN models (Table V). 591

For many cases, the significantly larger MFCNN
global-3 model had 592

an even shorter training time than MFCNN
global-1 due to the faster 593

convergence. 594

The moderate performance of the global GNN models could 595

be a result of the readout layer, which simply induces noise by 596

arbitrarily mixing signals of nodes further away in the system. 597

To investigate this possibility, we performed a set of experiments 598

up to grid size of 588, this time with local architectures for the 599

GCN, CHC and GAT models (left three columns of Table VI). 600

Interestingly, although the number of parameters of these local 601

models is comparable to that of the global models (Table VII), 602

the observed performance of each of the three GNN models is 603

considerably worse. This suggests that the main contribution to 604

the predictive capacity actually stems from the readout layer and 605

also indicates a potential lack of locality properties. 606

To further validate the above arguments, we investigated the 607

effect of extending the local models with a readout layer, i.e. con- 608

verting the local regression models to their global counterparts. 609

We found that using the readout layer significantly improved 610

the predictive performance for all cases (right three columns of 611

Table VI). 612

One could argue that the improvement is due to the increased 613

number of parameters, which did indeed approximately double 614

(Table VII). However, comparing the performance of the two 615

sets of global models, the difference seems to be marginal, 616
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TABLE VII
NUMBER OF PARAMETERS FOR LOCAL AND EXTENDED GLOBAL REGRESSION GNN MODELS (FIXED AND VARYING TOPOLOGY)

TABLE VIII
BCE STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) OF THE TEST SETS FOR GLOBAL CLASSIFICATION MODELS (FIXED TOPOLOGY)

highlighting again the utility of the fully connected component617

and confirming our suspicion of a lack of locality within this618

problem.619

Finally, we also investigated the utility of using the nodal ad-620

mittance matrix to express electrical distances within the power621

grid – i.e. setting k = 1 in (11) –, rather than the simple binary622

adjacency matrix (k = 0). For this inherently more sophisticated623

approach, the results were in fact fairly consistent to those with624

k = 0 (a table summarising the MSE statistics for such models625

can be found in the Supplementary Materials). This is again626

in accordance with our suspicion that locality between input627

and output variables for this set of problems is rather limited,628

hence even more sophisticated measures of distance still cannot629

improve the performance of the GNNs.630

2) Classification: In principle, the binding status of con-631

straints could be predicted as nodal and edge features within632

a GNN framework. However, based on our findings for the633

regression experiments (i.e. that the global strategy significantly634

outperforms the local one), we treated constraints only as global635

variables. Classification performance is reported in terms of636

statistics of BCE of the test set, again based on 10 independent637

runs (Table VIII). Additional tables concerning the number of638

parameters as well as the training time for each model can be639

found in the Supplementary Materials.640

Here, the single-layer FCNN was observed to be even more641

dominant relative to the regression case. Interestingly, for larger642

grids, it even outperforms the three-layer FCNN, which could 643

be suffering from over-fitting as a consequence of increased 644

flexibility. In general, we reach a similar conclusion as in the 645

global regression setting, whereby the performance enhance- 646

ments of the GNN classifiers are marginal respective to their 647

practicality and computational limitations. CHC and SC mod- 648

els perform similarly, but CHC remains the cheaper option 649

with respect to the training time. Note that GAT was excluded 650

from these experiments since it had already shown weak per- 651

formance for the regression case relative to the other GNN 652

models. 653

Although for brevity we only present the test set loss, we 654

also note that we observed a greater precision than recall in 655

virtually every instance. This implies that the BCE objective 656

is more sensitive to false positives. In combination with the 657

iterative feasibility test, which is more sensitive to false neg- 658

ative predictions, this can result in a significant increase in the 659

computational cost of obtaining solutions [22]. In order to fix 660

this misalignment, one could either use a weighted BCE (with 661

appropriate weights for the corresponding terms) or a meta-loss 662

objective function [22] [32]. 663

C. Varying Topology 664

We now focus our analysis toward the predictive performance 665

of NN models trained (and tested) using data derived from power 666
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TABLE IX
MSE STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) OF THE TEST SETS FOR GLOBAL REGRESSION MODELS WITH VARYING TOPOLOGY

TABLE X
MSE STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) OF THE TEST SETS FOR LOCAL AND EXTENDED GLOBAL REGRESSION GNN MODELS

(VARYING TOPOLOGY)

grids of size 24 – 588 with varying topology. In these experi-667

ments, we modeled the N−1 line contingency and samples for a668

given grid differed not only in their input grid parameters but also669

in their topology. For FCNN and CNN models, we used only grid670

parameters as inputs to predict the corresponding quantities of671

regression and classification, similarly to the fixed topology. We672

note that in theory, the input vector could be extended to include673

topological information, but it is rather cumbersome due to the674

quadratic scaling of the weighted adjacency matrix with system675

size. For GNN models, however, the change in the topology can676

be naturally taken into account by passing the graph information677

of the sample along with the grid parameters. For the regression678

and classification approaches we have: NNreg
θ (xi,Gi) = ŷ∗i and679

NNclf
θ (xi,Gi) = Âi, where xi and Gi are the grid parameter680

vector and topology of the i-th sample, respectively.681

1) Regression: We begin our discussion again by evaluating682

the global regression models (Table IX). As expected, due to683

the larger effective parameter space, the regression performance684

using samples with varying topology decreases when compared685

to those with fixed topology for all cases and architectures (c.f.686

Table III). A significant difference is that the best GNN models687

– CHC in most cases – outperforms both the single-layer and688

even the three-layer FCNN models (and CNN models too). This689

is resultant of the fact that in these models, any change in the690

network topology is ignored, whilst in the GNN architectures it is691

considered explicitly. This is a promising finding for applications692

of GNN models for predicting solutions of more sophisticated693

OPF problems including contingencies.694

Interestingly, further investigations revealed that locality 695

properties still play a marginal role in the predictive performance 696

of GNNs: as for the fixed topology cases, local GNN models 697

have a significantly weaker performance, which is subsequently 698

restored by attaching a readout layer (Table X). 699

2) Classification: For the classification models, we consid- 700

ered again only the global case (Table XI). We note that due to the 701

higher number of non-trivial constraints, the size of the NN mod- 702

els with varying topology differs from those with fixed topology 703

(details are shown in the Supplementary Materials). Therefore, 704

unlike in the case of regression, we cannot compare directly the 705

BCE statistics of experiments with fixed and varying topology. 706

Nevertheless, in general, we found a similar trend to the global 707

regression, i.e. the best performing GNN model (again, most 708

often CHC) consistently outperforms the single-layer FCNN, 709

the CNN and even the three-layer FCNN models. This means 710

that applying GNN models is preferable over a significantly 711

larger FCNN architecture for both OPF related regression and 712

classification based problems with varying topology. 713

D. Locality Properties 714

Experimental results for the NN models indicated that the 715

general assumption of locality may not be appropriate for this 716

problem, i.e. there is only a weak – or no existence of – locality 717

between load inputs and generator set-point outputs. To explore 718

this relationship further, we carried out a sensitivity analysis that 719

directly measures locality: for each synthetic grid, we iteratively 720
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Fig. 5. Analysis of locality properties for each synthetic grid. Left and right panels show the average absolute value of the relative change (with two-sided
95% confidence intervals) in voltage magnitude (green), injected active power (orange) and locational marginal prices (purple), respectively, as a function of the
topological distance from the perturbed load. Center panels show the histogram of generators with respect to the neighbourhood order from loads.

TABLE XI
BCE STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) OF THE TEST SETS FOR GLOBAL CLASSIFICATION MODELS WITH VARYING TOPOLOGY
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perturbed each active load of 100 configurations by 1% and721

recorded the absolute value of the relative change in voltage mag-722

nitude and active power injection of each generator (i.e. |dV j
m

dP i
l

|723

and |dP j
g

dP i
l

|, where P i
l are the active loads with i = 1, . . . , |L|;724

and V j
m and P j

g are the voltage magnitude and injected active725

power of generators with j = 1, . . . , |G|), as a function of neigh-726

bourhood order (i.e. the topological distance from the perturbed727

load). If a grid were to exhibit locality properties, one would728

expect a distinct negative correlation between the average of729

these quantities and the respective distance from the perturbed730

load within the graph domain.731

The results of the sensitivity analysis are shown in the left732

panels of Fig. 5. Although there are certain cases where either733

the voltage magnitude or active power injection show a weak734

anti-correlation with the topological distance, in general we735

found little evidence that the topology of the network influences736

the correlation between input and output variables. Plotting the737

distribution of generators as a function of distance from the738

perturbed load (middle panels of Fig. 5) suggests that this result739

should be of no surprise: as the system size increases, so does the740

average distance between the perturbed load and the generators741

in the system, which decreases the likelihood that nearby gener-742

ators will balance corresponding demand (for apparent physical743

reasons such as generator capacity, line congestion etc.).744

Finally, we also explored the existence of possible locality745

between grid inputs and the LMPs, which are functions of the746

duals (shadow prices) [51]. If a stronger locality property were747

to exist here this would be promising for using GNN models to748

predict electricity prices even with fixed topology [52]. However,749

as shown in the right panels of Fig. 5, we found no evidence of750

locality for the LMP values either.751

IV. CONCLUSION752

With the potential to shift the entire computational effort753

to offline training, machine learning assisted OPF has become754

an increasingly interesting research direction. Neural network755

based approaches are particularly promising as they can ef-756

fectively model complex non-linear relationships between grid757

parameters and primal or dual variables of the underlying OPF758

problem.759

Although most related works have applied fully connected760

neural networks so far, these networks scale relatively poorly761

with system size. Therefore, incorporating topological informa-762

tion of the electricity grid into the inductive bias of some graph763

neural network is a sensible step towards reducing the number764

of NN parameters.765

In this paper, we first provided a general framework of the766

most widely used end-to-end and hybrid techniques and showed767

that they can be considered as estimators of the OPF operator or768

function. In this sense, our framework could be readily extended769

to more sophisticated OPF problems, such as consideration770

of unit commitment or security constraints, as well as direct771

prediction of derived market signals (e.g. LMPs).772

We then presented a systematic comparison of several NN773

architectures including FCNN, CNN and GNN models. We774

found that for systems with fixed topology, an FCNN model has 775

a comparable or even better predictive performance than global 776

CNN and GNN models with similar number of parameters. The 777

moderate performance of the CNN model can be explained 778

by the fact that it carries out convolutions in Euclidean space 779

(instead of the graph domain). We also identified that in the 780

case of global GNN models, the readout layer plays a key role: 781

constructing local models by removing their readout layer led 782

to a significant decline in the predictive performance. 783

The results with fixed topology indicated that the required 784

assumption of locality between grid parameters (inputs) and 785

generator set-points (outputs) might not hold. To validate the 786

findings of the NN experiments, by carrying out a sensitivity 787

analysis we showed that locality properties are indeed scarce 788

between grid parameters and primal variables of the OPF. Ad- 789

ditionally, we found a similar lack of locality between grid 790

parameters and LMPs. 791

Finally, we also performed a systematic comparison of NN 792

models using varying topology of the samples. In these ex- 793

periments, we modeled the N−1 contingency of transmission 794

lines in both the training and test sets. We found that for such 795

cases, global GNN architectures outperform FCNN and CNN 796

models for both regression and classification based problems. 797

The reason is that although locality properties still play a limited 798

role, GNN models could take the changes of the topology into 799

account, which were completely neglected amongst FCNN and 800

CNN models in our setup. Although it might be possible to ex- 801

tend FCNN and CNN models’ input by topology related features, 802

it is definitely less straightforward than for GNN models, where 803

this information is accounted for naturally. This property of the 804

GNN architectures therefore makes these models promising for 805

realistic applications, especially for security constrained OPF 806

problems. 807
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[28] L. Halilbašić, F. Thams, A. Venzke, S. Chatzivasileiadis, and P. Pinson,884
“Data-driven security-constrained AC-OPF for operations and markets,”885
in Proc. Power Syst. Computation Conf., 2018, pp. 1–7.886

[29] X. Pan, T. Zhao, M. Chen, and S. Zhang, “Deepopf: A. deep neural network887
approach for security-constrained DC optimal power flow,” IEEE Trans.888
Power Syst., vol. 36, no. 3, pp. 1725–1735, May. 2021.889

[30] F. Zhou, J. Anderson, and S. H. Low, “The optimal power flow operator:890
Theory and computation,” IEEE Trans. Control Netw. Syst., vol. 8, no. 2,891
pp. 1010–1022, Jun. 2021.892

[31] A. Zamzam and K. Baker, “Learning optimal solutions for extremely fast893
AC optimal power flow,” in Proc. IEEE Int. Conf. Commun., Control,894
Computing Technol. Smart Grids, 2020, pp. 1–6.895

[32] M. Jamei, L. Mones, A. Robson, L. White, J. Requeima, and C. Ududec,896
“Meta-optimization of optimal power flow,” in Proc. Int. Conf. Mach.897
Learn., 2019. [Online]. Availabe: https://www.climatechange.ai/papers/898
icml2019/42899

[33] University of Washington: Department of Electrical & Computer Engi-900
neering, “Power systems test case archive,” Accessed: Sep. 19, 2021.901
[Online]. Available: http://labs.ece.uw.edu/pstca/902

[34] N. Dehmamy, A.-L. Barabási, and R. Yu, “Understanding the Represen-903
tation Power of Graph Neural Networks in Learning Graph Topology,” in904
Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 15413–15423.905

[35] J. Zhou et al., “Graph neural networks: A review of methods and applica-906
tions,” AI Open, vol. 1, pp. 57–81, 2020.907

[36] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive908
survey on graph neural networks,” IEEE Trans. Neural Netw. Learn. Syst.909
vol. 32 no. 1, pp. 4–24, Jan. 2021.910

[37] T. N. Kipf and M. Welling, “Semi-supervised classification with graph 911
convolutional networks,” in Proc. 5th Int. Conf. Learn. Representations, 912
Toulon, France, 2017. 913

[38] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural 914
networks on graphs with fast localized spectral filtering,” in Proc. Adv. 915
Neural Inf. Process. Syst., 2016, pp. 3844–3852. 916

[39] C. Morris et al., “Weisfeiler and Leman go neural: Higher-order graph 917
neural networks,” in Proc. AAAI Conf. Artif. Intell., 2019, vol. 33, no. 01, 918
pp. 4602–4609. 919
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Leveraging Power Grid Topology in Machine
Learning Assisted Optimal Power Flow

1

2

Thomas Falconer and Letif Mones3

Abstract—Machine learning assisted optimal power flow (OPF)4
aims to reduce the computational complexity of these non-linear5
and non-convex constrained optimization problems by consigning6
expensive (online) optimization to offline training. The majority of7
work in this area typically employs fully connected neural networks8
(FCNN). However, recently convolutional (CNN) and graph (GNN)9
neural networks have also been investigated, in effort to exploit10
topological information within the power grid. Although promising11
results have been obtained, there lacks a systematic comparison12
between these architectures throughout literature. Accordingly,13
we introduce a concise framework for generalizing methods for14
machine learning assisted OPF and assess the performance of a15
variety of FCNN, CNN and GNN models for two fundamental16
approaches in this domain: regression (predicting optimal gen-17
erator set-points) and classification (predicting the active set of18
constraints). For several synthetic power grids with interconnected19
utilities, we show that locality properties between feature and target20
variables are scarce and subsequently demonstrate marginal utility21
of applying CNN and GNN architectures compared to FCNN for a22
fixed grid topology. However, with variable topology (for instance,23
modeling transmission line contingency), GNN models are able to24
straightforwardly take the change of topological information into25
account and outperform both FCNN and CNN models.26

Index Terms—OPF, graph theory, neural networks.27

NOMENCLATURE28

Functions and operators29

Φ, Ψ OPF operators that map grid parameters to optimal30

values of the primal variables and both primal and31

dual variables, respectively.32

F OPF function introduced to simplify notation of the33

related operator whereby only grid parameters vary.34

f Objective function of a particular OPF problem.35

l Loss function used to optimize neural network36

parameters, θ.37

Sets38

A Set of active inequality constraints (those satisfied39

with equality at the optimal point).40
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CE, CI Full sets of equality and inequality constraints for a 41

particular OPF problem, respectively. 42

FΦ Set of feasible points for the optimization variables. 43

M Full set of neural network models for which predic- 44

tive performance is assessed. 45

N , E Sets of nodes (vertices) and edges that define an 46

undirected graph, G, respectively. 47

V Set of violated inequality constraints associated with 48

a vector of optimization variables, y. 49

Ω Abstract set representing the OPF operator domain. 50

σ Set of hyperparameters used to define neural net- 51

work architectures. 52

θ Set of neural network parameters optimized during 53

the model training process. 54

Variables 55

Pg, Pl Power injection and withdrawal for a particular gen- 56

erator and load, respectively (active power compo- 57

nents). 58

Vm Bus voltage magnitude. 59

x Vector of grid parameters (e.g. active and reactive 60

power components of loads). 61

y Vector of primal variables (e.g. voltage magnitudes 62

and active power component of generator injec- 63

tions). 64

z Vector of dual variables (Lagrangian multipliers) of 65

the associated equality and inequality constraints. 66

Zij Impedance of transmission line between bus i and 67

bus j. 68

I. INTRODUCTION 69

O PTIMAL power flow (OPF) is an umbrella term for a 70

family of constrained optimization problems that govern 71

electricity market dynamics and facilitate effective planning and 72

operation of modern power systems [1, p. 514]. Classical OPF 73

(AC-OPF) formulates a non-linear and non-convex economic 74

dispatch model, which minimizes the cost of generator schedul- 75

ing subject to either (or both) operation and security constraints 76

of the grid [2]. By virtue of competitive efficiency, optimal 77

schedules are typically found using interior-point methods [3]. 78

However, the required computation of the Hessian (second-order 79

derivatives) of the Lagrangian at each optimization step renders 80

a super-linear time complexity, thus large-scale systems can be 81

prohibitively slow to solve. 82

This computational constraint gives rise to several challenges 83

for independent system operators (ISOs): (1) variable inclusion 84

0885-8950 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. Strategies for solving OPF with interior-point methods: standard (left),
warm-start (center) and reduced (right) problems. x and y are the vectors of grid
parameters and optimization variables, respectively, f is the objective function,
CE and CI denote the sets of equality and inequality constraints, and A ⊆ CI
is the active subset of the inequality constraints. Typical varying arguments are
highlighted in orange, whilst remaining arguments are potentially fixed.

of certain generators (i.e. unit commitment) invokes binary85

variables in the optimization model, thereby forming a mixed-86

integer, non-linear program (known to be NP-hard), exacerbat-87

ing computational costs [4]; (2) the standard requirement for88

operators to satisfy N−1 security constraints (i.e. account for89

all contingency events where a single grid component fails)90

renders a much larger-scale problem, increasing the time com-91

plexity even further [5]; and lastly (3) modeling uncertainty92

in the supply-demand equilibrium induced by stochastic re-93

newable generation requires methods such as scenario based94

Monte-Carlo simulation [6], which necessitates sequential OPF95

solutions at rates unattainable by conventional algorithms.96

To overcome these challenges, ISOs often resort to simplified97

OPF models by utilizing convex relaxations [7] or lineariza-98

tions [8], [9] such as the widely adopted DC-OPF model [10].99

With considerably less control variables and constraints, DC-100

OPF can be solved very efficiently using interior-point or sim-101

plex methods [11, p. 224]. However, as DC-OPF solutions are102

in fact never feasible with respect to the full problem [12],103

set-points need to be found iteratively by manually updating104

the solution until convergence [13, p. 14] – hence DC-OPF is105

predisposed to sub-optimal generator scheduling.106

In practice, ISOs typically leverage additional information107

about the grid in attempt to obtain solutions more efficiently.108

For instance, given the (reasonable) assumption that comparable109

grid states will correspond to neighbouring points in solution110

space, one can use the known solution to a similar problem111

as the starting value for the optimization variables of another112

problem – a so-called warm-start (Fig. 1, center panel) –, ren-113

dering considerably faster convergence compared to arbitrary114

initialisation [14]. Alternatively, ISOs can capitalize on the115

observation that only a fraction of inequality constraints are116

actually binding at the optimal point [15], hence one can remove117

a large number of constraints from the mathematical model118

and formulate an equivalent, but significantly cheaper, reduced119

problem [16] (Fig. 1, right panel). Security risks associated with120

the omission of violated constraints from the reduced problem121

can be mitigated by iteratively solving the reduced OPF and122

updating the active set until all constraints of the full problem123

are satisfied [17].124

A. Machine Learning Assisted OPF125

A compelling new area of research borne from the machine126

learning community attempts to alleviate reliance on subpar OPF127

Fig. 2. Flowchart of the warm-start method (green panel) combined with a
NN regressor (orange panel). For clarity, default arguments of the OPF operator
are omitted.

frameworks by fitting an estimator functions on historical data. 128

The estimators are typically neural networks (NNs) owed to their 129

demonstrated ability to model complex non-linear relationships 130

with negligible online computation [18]. This makes it possible 131

to obtain predictions in real-time, thereby shifting the compu- 132

tational expense from online optimization to offline training – 133

and the trained model can remain sufficient for a period of time, 134

requiring only occasional re-training. 135

Most of the NN-based methods for machine learning assisted 136

OPF can be generalized as one of two approaches: 1) end-to-end 137

(or direct) models, where an estimator function is used to learn 138

a direct mapping between the grid parameters and the optimal 139

OPF solution; and 2) hybrid (or indirect) techniques – a two-step 140

approach whereby an estimator function first maps the grid 141

parameters to some quantities, which are subsequently used 142

as inputs to an optimization problem to find a (possibly exact) 143

solution. Based on the actual target type, these methods can be 144

further categorized depending on the type of predicted quantity: 145

regression or classification. 146

1) Regression: By inferring OPF solutions directly, end-to- 147

end regression methods bypass conventional solvers altogether, 148

offering the greatest (online) computational gains [19]. How- 149

ever, since OPF is a constrained optimization problem, the 150

optimal solution is not necessarily a smooth function of the 151

inputs: changes of the binding status of constraints can lead 152

to abrupt changes of the optimal solution. Since the number of 153

unique sets of binding constraints increases exponentially with 154

system size, this approach requires training on relatively large 155

data sets in order to obtain sufficient accuracy [20]. Moreover, 156

there is no guarantee that the inferred solution is feasible, and 157

violation of important constraints poses severe security risks to 158

the grid. 159

Instead, one can adopt a hybrid approach whereby the in- 160

ferred solution of the end-to-end method is used to initialize 161

an interior-point solver (i.e. a warm-start), which provides an 162

optimal solution to an optimization problem equivalent to the 163

original one (Fig. 2). Compared to default heuristics used in 164

the conventional optimization method, an accurate initial point 165

could theoretically reduce the number of required iterations 166

(and so the computational cost) to reach the optimal point [21]. 167

However, as discussed in [22], there are several practical issues 168

which could arise, leading to limited computational gain for this 169

technique. 170

2) Classification: An alternative hybrid approach leverages 171

the aforementioned technique of formulating a reduced prob- 172

lem by removing non-binding inequality constraints from the 173

mathematical model. A NN classifier is first used to predict the 174

active set of constraints by either 1) identifying all distinct active 175
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Fig. 3. Flowchart of the iterative feasibility test method (green panel) com-
bined with a NN classifier (orange panel). Â(k) and V(k) are the sets of
predicted active and violated inequality constraints at thek-th step of the iterative
feasibility test, respectively. For clarity, default arguments of the OPF operator
are omitted.

sets in the training data and using a multi-class classifier to map176

the features accordingly [23]; or 2) by predicting the binding177

status of each inequality constraint using a binary multi-label178

classifier [22]. Since the number of active sets increases ex-179

ponentially with system size [24], the latter approach may be180

computationally favourable for larger grids.181

To alleviate the security risks associated with imperfect clas-182

sification, an iterative feasibility test can be employed to rein-183

state violated constraints until convergence, as detailed in [22]184

(Fig. 3). Since the reduced OPF is much cheaper relative to the185

full problem, this approach can in theory be rather efficient.186

B. Contributions187

Both the end-to-end and hybrid techniques for machine188

learning assisted OPF benefit from NN architectures designed189

to maximize predictive performance. Related works typically190

employ a range of shallow to deep fully connected neural191

networks (FCNN). However, convolutional (CNN) [25] and192

graph (GNN) [26]–[27] neural networks have recently been193

investigated to exploit assumed locality properties within the194

respective power grid, i.e. whether the topology of the electricity195

network influences the correlation between inputs and outputs.196

Building on this set of works, our contributions are as follows:197
� We introduce a concise framework for generalizing end-to-198

end and hybrid methods for machine learning assisted OPF199

by characterising them as estimators of the corresponding200

OPF operator or function.201
� We provide a systematic comparison between the afore-202

mentioned NN architectures for both the regression and203

classification approaches.204
� We demonstrate the marginal utility of applying CNN205

and GNN architectures for fixed topology problems (i.e.206

varying grid parameters only for the same topology), hence207

recommend the application of FCNN models for such208

problems.209
� We show that locality properties between grid parameters210

(features or inputs) and corresponding generator set-points211

(targets or outputs) – essential for efficient inductive bias212

in both CNN and GNN models – are weak, which explains213

the moderate performance of these models compared to214

FCNN.215
� We also show that a similar weak locality applies between216

grid parameters and locational marginal prices (LMPs),217

indicating that the applicability of CNN and GNN archi- 218

tectures would face similar challenges if instead used to 219

predict these derived market signals. 220
� We present a set of varying topology problems (i.e. when 221

both grid parameters and network topology are varied), 222

that demonstrate successful utilization of structure based 223

inductive bias through superior predictive performance of 224

GNN models relative to both CNN and FCNN models. 225

It should be noted that, although we address the requirement of 226

accurate predictions for machine learning assisted OPF, feasibil- 227

ity and optimality concerns associated with end-to-end methods, 228

as well as the computational limitation of hybrid methods, 229

remains a challenge for future work. 230

II. METHODOLOGY 231

A. Problem Formulation 232

This work centers on the fundamental form of OPF, without 233

consideration for unit commitment or security constraints (al- 234

though machine learning assisted OPF can be readily extended 235

to such cases [28], [29]). In general, OPF problems can be 236

expressed using the following concise form of mathematical 237

programming: 238

min
y

f(x, y)

s. t. cEi (x, y) = 0 i = 1, . . . , n
cIj(x, y) ≥ 0 j = 1, . . . ,m

(1)

wherex andy are the vectors of grid parameters and optimization 239

variables, respectively, f(x, y) is the objective (or cost) function 240

(parameterized by x), which is minimized with respect to y 241

and subject to equality constraints cEi (x, y) ∈ CE and inequality 242

constraints cIj(x, y) ∈ CI. For convenience, we introduce CE and 243

CI, which denote the sets of equality and inequality constraints 244

with corresponding cardinalities n = |CE| and m = |CI|. For 245

instance, in a simple economic dispatch problem (the focus of 246

this work), x includes the active and reactive power compo- 247

nents of loads, y is a vector of voltage magnitudes and active 248

powers of generators and the objective function is a quadratic 249

or piece-wise linear function of the (monotonically increasing) 250

generator cost curves. Equality constraints include the power 251

balance and power flow equations, whilst inequality constraints 252

impose lower and upper bounds on certain quantities. 253

B. OPF Operators and Functions 254

By formulating the problem in such a manner as (1), one 255

can view OPF as an operator, which maps the grid parameters 256

(x) to the optimal value of the optimization variables (y∗) [30]. 257

In order to introduce a consistent framework, we extend the 258

operator arguments by the objective (f ) and constraint functions 259

(CE and CI), as well as by the starting value of the optimization 260

variables (y0). The value of y0 has a considerable influence of 261

the convergence rate of interior-point methods, and for non- 262

convex formulations with multiple possible local minima, even 263

the found optimum is a function of y0. The general form of the 264
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OPF operator can be written as1:265

Φ : Ω → Rny : Φ
(
x, y0, f, CE, CI

)
= y∗, (2)

whereΩ is an abstract set within which the values of the operator266

arguments are allowed to change and ny denotes the dimension267

of the optimization variables. In the simplest case, only the grid268

parameters vary, whilst most arguments of the OPF operator269

remain fixed. Accordingly, we introduce a simpler notation, the270

OPF function, for such cases:271

FΦ : Rnx → Rny : FΦ(x) = y∗, (3)

where nx and ny are the dimensions of the grid parameters and272

optimization variables, respectively, whilst FΦ is used to denote273

the set of all feasible points, such that y∗ ∈ FΦ. Depending on274

the grid parameters, the problem may be infeasible: FΦ = ∅.275

C. Estimators of OPF Operators and Functions276

Machine learning assisted OPF methods apply either an esti-277

mator operator or function, which both provide a computation-278

ally cheap prediction to the optimal point of the OPF based on279

the grid parameters, i.e. Φ̂(x) = ŷ∗ : ‖ŷ∗ − y∗‖ < ε ∧ T [Φ̂] 
280

T [Φ] and F̂Φ(x) = ŷ∗ : ‖ŷ∗ − y∗‖ < ε ∧ T [F̂Φ] 
 T [FΦ],281

where ‖ · ‖ is an arbitrary norm, ε is a threshold variable and282

T denotes the computational time to obtain the solution.283

1) End-to-End: To learn the optimal OPF solution directly284

from the grid parameters, NNs as regressors can be used, de-285

picted by the following function:286

F̂Φ(x) = NNreg
θ (x) = ŷ∗, (4)

where subscript θ denotes the NN parameters and the superscript287

reg indicates that the NN is used as a regressor. The problem288

dimensionality can be reduced by predicting only a subset of289

the optimization variables – in this case, the remaining state290

variables can be easily obtained by solving the corresponding291

power flow problem [31], given the prediction is a feasible292

point. Optimal NN parameters can be obtained by minimizing293

some loss function between the ground-truth y∗ and prediction294

ŷ∗ of some training set. Typically, the squared L2-norm, i.e.295

mean-squared error (MSE), is used: �(y∗, ŷ∗) = ‖y∗ − ŷ∗‖22. To296

mitigate violations of certain constraints, a penalty term can be297

added to this loss function [20].298

2) Warm-Start: Warm-start approaches utilize a hybrid299

model whereby a NN is first parameterized to infer an approx-300

imate set-point, ŷ0 = NNreg
θ (x), which is subsequently used to301

initialize the constrained optimization procedure resulting in the302

exact solution (y∗):303

Φ̂warm(x) = Φ
(
x, ŷ0, f, CE, CI

)
(5)

= Φ
(
x,NNreg

θ (x), f, CE, CI
)

(6)

= y∗. (7)

1We note that an even more general form of the operator can be defined when
the arguments are mapped to the joint space of the primal and dual variables of the
optimization problem: Ψ : Ω → Rny+nz : Ψ(x, y0, f, CE, CI) = (y∗, z∗),
where z∗ is the optimal value of the Lagrangian multipliers of the equality and
inequality constraints. As locational marginal prices are computed from z∗, this
formalism is useful to construct estimators for learning electricity prices.

Optimal NN parameters can be obtained by minimizing a 304

similar conventional loss function as in the case of the end- 305

to-end approach. However, significant improvement has been 306

demonstrated by optimizing NN parameters with respect to a 307

(meta-)loss function corresponding directly to the time com- 308

plexity of the entire pipeline (i.e. including the warm-started 309

OPF) [32]: �(ŷ0) = T [Φ(x, ŷ0, f, CE, CI)]. 310

3) Reduced Problem: In this hybrid approach, a binary multi- 311

label NN classifier (NNclf
θ ) is used to predict the active set 312

of constraints, and a reduced OPF problem is formulated, 313

which maintains the same objective function as the original full 314

problem: 315

Φ̂red(x) = Φ
(
x, y0, f, CE, Â

)
(8)

= Φ
(
x, y0, f, CE,NNclf

θ (x)
)

(9)

= ŷ∗, (10)

where A ⊆ CI is the active subset of the inequality constraints 316

and Â is the predicted active set. It should also be noted that 317

CE ∪ A contains all active constraints defining the specific con- 318

gestion regime. In the case of a multi-label classifier, the output 319

is a binary vector representing an enumeration of the set of non- 320

trivial constraints, learnt by minimizing the binary cross-entropy 321

(BCE) loss between the ground-truths represented by A and 322

the predicted binding probabilities of constraints defining Â: 323

�(A, Â) = −∑
j cj log ĉj + (1− cj) log(1− ĉj). The output 324

dimension of the multi-label classifier is reduced by removing 325

trivial constraints (those that are always binding or non-binding 326

in the training set) for training. We note that to formulate the 327

subsequent reduced OPF problem, these constraints need to be 328

reinstated before the iterative feasibility test to construct the 329

complete active set. 330

Violated constraints omitted from the reduced model are 331

retained using the aforementioned iterative feasibility test to 332

ensure convergence to an optimal point of the full problem. 333

The computational gain can again be further enhanced via 334

meta-optimization by directly encoding the time complexity 335

into a (meta-)loss function and optimizing the NN weights 336

accordingly [22]: �(Â) = T [Φ(x, y0, f, CE, Â)]. 337

D. Architectures 338

Power grids are complex networks consisting of buses (e.g. 339

generation points, load points etc.) connected by transmission 340

lines, hence can conveniently be depicted as an un-directed 341

graph G = (N , E), where N and E ⊆ N ×N denote the sets 342

of nodes and edges (Fig. 4). Also, G and L will denote the sets 343

of generators and loads, respectively. 344

This formulation motivates the use of NN architectures specif- 345

ically designed to leverage the spatial dependencies within non- 346

Euclidean data structures, i.e. GNN models – the hypothesis 347

being that OPF problems exhibit a locality property whereby 348

the network topology influences to correlation between grid 349

parameters and the subsequent solution. 350

In real power grids, however, a given bus can include multiple 351

generators and loads, which, although can have different power 352

supply and demand, share the bus voltage. To accommodate 353

such characteristics in GNN models straightforwardly, we use a 354
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Fig. 4. Schematic diagram [33] (left) and corresponding graphical representa-
tion (right) for synthetic grid 30-ieee. Orange and green circles denote generator
and load buses, respectively.

transformed version of the original graph: G′ = (N′, E′), where355

each node of the transformed network represents either a single356

generator or a load (i.e. |N ′| = |G|+ |L|), and generators and357

loads belonging to the same bus of the original network are358

interconnected. With this representation of the grid, generator359

real power outputs are obtained as individual nodal features,360

while bus voltage magnitudes are computed as averages of the361

corresponding individual voltages.362

1) FCNN: Fully connected NN models, denoted by MFCNN,363

are used here as baseline. Their input domain is equivalent364

to the raw vector of grid parameters, i.e. active and reactive365

power components of loads: x ∈ R2|L|, while the corresponding366

output vector includes the generators’ injected active power367

and the voltage magnitude at buses comprising at least one368

generator (N gen ∈ N ), i.e. y ∈ R|G|+|N gen|. Since FCNNs are369

defined in an un-structured data space, this baseline theoretically370

lacks sufficient relational inductive bias to efficiently exploit371

any underlying spatial dependencies – this information could be372

learnt implicitly through optimization, but possibly requires a373

highly flexible model with a large amount of data, thus scaling374

poorly to large-scale OPF problems [34]. We investigated two375

FCNN models using one (MFCNN
global-1) and three (MFCNN

global-3)hidden376

layers.377

2) CNN: We explore the utility of augmenting the fully con-378

nected layers with an antecedent sequence of convolutional and379

pooling layers (MCNN
global-4), designed to extract a spatial hier-380

archy of latent features, which are subsequently (non-linearly)381

mapped to the target. A reasonable assumption here is that one382

can leverage spatial correlations within pseudo-images of the383

electrical grid using the weighted adjacency matrix. However,384

convolutions in Euclidean space are dependent upon particular385

geometric priors, which are not observed in the graph domain386

(e.g. shift-invariance), hence filters can no longer be node-387

agnostic and the lack of natural order means operations need388

to instead be permutation invariant. Nevertheless, we validate389

this conjecture using CNNs by combining each load constituent390

of length |N ′| into a 3-dimensional tensor, i.e. x ∈ R2×|N ′|×|N ′|.391

3) GNN: We analyze several GNN architectures whereby the392

weighted adjacency matrix is used to extract latent features by393

propagating information across neighbouring nodes irrespective394

of the input sequence [35]. Such propagation is achieved using395

graph convolutions, which can be broadly categorized as either 396

spectral or spatial filtering [36]. 397

Spectral filtering adopts methods from graph signal pro- 398

cessing: operations occur in the Fourier domain whereby in- 399

put signals are passed through parameterized functions of the 400

normalized graph Laplacian, thereby exploiting its positive- 401

semidefinite property. Given this procedure has O(|N ′|3) time 402

complexity, we investigate four spectral layers designed to re- 403

duce computational costs by avoiding full eigendecomposition 404

of the Laplacian: (1) ChebConv (MCHC), which uses approxi- 405

mate filters derived from Chebyshev polynomials of the eigen- 406

values up to the K-th order [37]; (2) GCNConv (MGCN), which 407

constrains the layer-wise convolution to first-order neighbours 408

(K = 1), lessening overfitting to particular localities [38]; (3) 409

GraphConv (MGC), which is analogous to GCNConv except 410

adapting a discrete weight matrix for self-connections [39]; 411

and (4) GATConv (MGAT), which extends the message passing 412

framework of GCNConv by assigning each edge with relative 413

importance through attention coefficients [40]. 414

By contrast, spatial graph convolutions (a non-Euclidean gen- 415

eralization of the convolution operation found in CNNs) are per- 416

formed directly in the graph domain, reducing the computational 417

complexity whilst minimizing loss of structural information – a 418

byproduct of reducing to embedded space [36]. We investigate 419

SplineConv (MSC) [42] which, for a given node, computes a 420

linear combination of its features together with those of its 421

K-th order neighbours, weighted by a kernel function – the 422

product of parameterized B-spline basis functions. The local 423

support property of B-splines reduces the number of parameters, 424

enhancing the computational efficiency of the operator. Note that 425

all GNN models are named in accordance with the PyTorch 426

Geometric library [43]. 427

Finally, we note that due to the lack of connectivity informa- 428

tion of the grid, conventional FCNN (and CNN) architectures 429

typically fail to adapt efficiently to power system restructuring. 430

In order to obtain sufficient performance with alternative grid 431

topologies (i.e. contingency cases), these models need to be 432

re-trained with appropriate training data. In contrast, GNNs 433

compute localized convolutions in a manner such that the num- 434

ber of weights remains independent of the topology of the 435

network making these models capable to train and predict on 436

samples having different topologies [36]. 437

E. Technical Details 438

1) Samples: To span multiple grid sizes, we built test cases 439

using several synthetic grids from the Power Grid Library [44] 440

ranging from 24 – 2853 buses. To maintain validity of the 441

constructed data sets whilst ensuring a thorough exploration of 442

congestion regimes, we generated 10 k (feasible) fixed topology 443

samples for each synthetic grid by re-scaling each active and 444

reactive load component (relative to nominal values) by factors 445

independently drawn from a uniform distribution, U(0.8, 1.2). 446

To investigate performance of the different NN architectures 447

with varying topology, we also generated 10 k (feasible) samples 448

subject to N−1 line contingency. For each sample, active and 449
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TABLE I
NUMBER OF CHANNELS USED FOR CNN AND GNN ARCHITECTURES. σs AND

σm ARE THE GRID SIZE AND MODEL TYPE BASED SCALING FACTORS.
nn DENOTES THE NUMBER OF NODES OF THE TRANSFORMED

NETWORK AND ny IS THE NUMBER OF OUTPUT VARIABLES

reactive load components were re-scaled as before and a sin-450

gle transmission line was randomly removed from the original451

grid topology. OPF solutions were obtained using Power-452

Models.jl [45] (an OPF package written in Julia [46]) in453

combination with the IPOPT solver [3].454

2) Neural Networks: Our model with the largest number of455

parameters was the three hidden layer fully connected model456

(MFCNN
global-3) that also served as the baseline. The size of each hid-457

den layer was computed through a linear interpolation between458

the corresponding input and output sizes.459

In the case of CNN, each model was constructed using 3× 1460

kernels, 1-dimensional max-pooling layers, zero-padding and a461

stride length of 1.462

For GNN models, we investigated three architecture types:463

(1) the first type included two convolutional layers followed464

by a fully connected readout layer making the original local465

structure non-local (MGNN
global-3); (2) in the second type, only three466

convolutional layers were present, simply treating the features467

available locally at each node as the output (MGNN
local-3); and lastly468

(3) the third type was again a global one extending the above469

local type with a fully connected readout layer (MGNN
global-4). While470

corresponding MGNN
global-3 and MGNN

local-3 models were constructed471

to have an approximately equal number of parameters (details472

discussed below), MGNN
global-4 models had a significantly larger473

number of parameters due to the additional readout layer. For474

MCHC and MSC models, the hyperparameter K was set to 4.475

Since our aim was to compare the predictive performance476

of models with and without topology based inductive bias, the477

single-layer FCNN, CNN and several GNN architectures were478

constructed to have a similar number of parameters for each479

synthetic grid. This required scaling the number of channels of480

the hidden layers of some architectures according to both the481

grid size (σs) and the model type (σm). We applied a simple482

grid search in order to obtain the optimal number of layers, as483

well as the values of parameters σs and σm. The actual number484

of channels used for the CNN and GNN models is presented in485

Table I.486

Edge weights (eij) of the GNN architectures were modeled487

as a function of transmission line impedance, Zij , between the488

i-th and j-th bus. Specifically, we used the following general489

expression between connected buses i and j: 490

eij = exp(−k log |Zij |), (11)

where k is a hyperparameter. Note that k = 0 leads to the 491

application of the simple binary adjacency matrix, while in the 492

case of k = 1 the absolute value of the corresponding element 493

of the nodal admittance matrix is used. 494

For each grid, the generated 10 k samples were split into 495

training, validation and test sets with a ratio of 80:10:10. In 496

all cases, the ADAM [47] optimizer was applied (with default 497

parametersβ1= 0.9 andβ2= 0.999 and learning-rate η = 10−4) 498

using an early stopping with a patience of 20 determined on the 499

validation set. Mini-batch size of 100 was applied and hidden 500

layers were equipped with BatchNorm [48] and a ReLU [49] 501

activation function was used. For each model, statistics (mean 502

and two-sided 95% confidence interval) of the predictive perfor- 503

mance were computed using 10 independent runs. 504

Models were implemented in Python 3.0 usingPyTorch [50] 505

and PyTorch Geometric [43] libraries. Experiments were 506

carried out on NVIDIA Tesla M60 GPUs. In order to fa- 507

cilitate research reproducibility in the field, we have made 508

the generated samples, as well as the code our work is 509

based upon, publicly available at https://github.com/ 510

tdfalc/MLOPF.jl. 511

III. NUMERICAL RESULTS 512

A. Computational Performance of Prediction 513

The fundamental motivation for using NN models to predict 514

OPF solutions is their superior (online) computational perfor- 515

mance compared to directly solving the corresponding AC-OPF 516

problems. In Table II, we compared the average computational 517

times of obtaining exact AC-OPF solutions using the IPOPT 518

solver against inferring approximate solutions using various NN 519

architectures. It is evident that, for all investigated systems, the 520

computational time of the NN models is several orders of mag- 521

nitude smaller than that of solving AC-OPF with conventional 522

methods (note that in Table II, solve times of AC-OPF refer to 523

a single sample, while prediction times of NN models refer to 524

1000 samples). Constrained optimization problems were solved 525

on CPU (Intel Xeon E5-2686 v4, 2.3 GHz), while for the NN 526

predictions we could utilize GPU (NVIDIA Tesla M60). 527

However, as discussed previously, comparing these compu- 528

tational times alone can be misleading: NN predictions are not 529

necessarily optimal or even feasible. There have been several 530

attempts to obtain feasible and possibly optimal estimates of 531

OPF solutions (for instance by using hybrid approaches [29], 532

[31] or introducing penalty terms of constraint violations in the 533

loss function [20]). For all approaches, improving the quality of 534

the predictive performance is fundamental. One apparent way is 535

to increase the training data size significantly. In the following, 536

we investigate the applicability of a more economical approach 537

by using appropriate inductive bias in NN models. 538
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TABLE II
PREDICTION TIME STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) FOR GLOBAL REGRESSION MODELS

TABLE III
MSE STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) OF THE TEST SETS FOR GLOBAL REGRESSION MODELS (FIXED TOPOLOGY)

TABLE IV
NUMBER OF PARAMETERS FOR GLOBAL REGRESSION MODELS (FIXED AND VARYING TOPOLOGY)

B. Fixed Topology539

We begin our analysis by investigating the predictive perfor-540

mance of NN models trained (and tested) using data derived541

from power grids with a fixed topology. In these experiments,542

only the grid parameters were varied within the datasets, while543

all the grid connections were the same among the samples.544

In this setup, FCNN and CNN architectures are functions of545

the grid parameters only, i.e. for regression and classification546

approaches we have NNreg
θ (xi) = ŷ∗i and NNclf

θ (xi) = Âi, where547

xi is the grid parameter vector of the i-th sample. For GNN548

models, besides the grid parameters, the grid topology is also549

passed: NNreg
θ (xi,G) = ŷ∗i and NNclf

θ (xi,G) = Âi, where G550

represents the (fixed) grid topology with corresponding edge 551

weights. 552

1) Regression: For each grid, Table III summarizes the MSE 553

statistics for regression model architectures that encode the 554

targets as global variables. The first column includes the results 555

of our baseline MFCNN
global-3 model, which has the largest number 556

of parameters (Table IV). In the presence of appropriate locality 557

attributes, CNN and GNN models are expected to provide a 558

comparable performance toMFCNN
global-3 with a significantly smaller 559

amount of parameters due to their topology based inductive bias. 560

In order to investigate the predictive performance with and 561

without topological information, we first constructed global 562



8 IEEE TRANSACTIONS ON POWER SYSTEMS

TABLE V
TRAINING TIME STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) FOR GLOBAL REGRESSION MODELS

TABLE VI
MSE STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) OF THE TEST SETS FOR LOCAL AND EXTENDED GLOBAL REGRESSION GNN MODELS

(FIXED TOPOLOGY)

FCNN (MFCNN
global-1), CNN (MCNN

global-4) and GNN (MGNN
global-3) mod-563

els in a manner such that they have a similar number of param-564

eters for each grid (Table IV).565

In general, the regression performance of the investigated566

models (including the baseline) has a week correlation with the567

system size. This indicates that other factors, for instance the568

actual number of active sets, can also play an important role (as569

observed previously in [22]).570

Comparing the CNN and GNN models, we found that in571

most of the cases, GNN models outperform the CNN model.572

An interesting exception is case 57-ieee, where the CNN model573

appeared to perform best. However, we rather consider this as574

an anomalous case, where the reduced error could be attributed575

to the coincidental unearthing of structural information within576

the receptive fields when convolving over the pseudo-image of577

the grid.578

Although GCN is the simplest GNN model we investigated,579

in general it performs similarly to the more sophisticated GAT580

model. Whilst CHC and SC models have similar performance,581

computational efficiencies with respect to the training times of582

CHC (Table V) allude to a better scaling to larger grids.583

The most striking observation is that the single-layer FCNN584

model exhibits exceedingly comparable performance to the best585

GNN models. For several cases, the difference between the586

average MSE values of the best GNN model and the single-layer587

model is not statistically significant and for the two largest588

grids, FCNN even outperforms all GNN models. It is also worth589

mentioning that MFCNN
global-1 has at least one order of magnitude 590

shorter training times than the global GNN models (Table V). 591

For many cases, the significantly larger MFCNN
global-3 model had 592

an even shorter training time than MFCNN
global-1 due to the faster 593

convergence. 594

The moderate performance of the global GNN models could 595

be a result of the readout layer, which simply induces noise by 596

arbitrarily mixing signals of nodes further away in the system. 597

To investigate this possibility, we performed a set of experiments 598

up to grid size of 588, this time with local architectures for the 599

GCN, CHC and GAT models (left three columns of Table VI). 600

Interestingly, although the number of parameters of these local 601

models is comparable to that of the global models (Table VII), 602

the observed performance of each of the three GNN models is 603

considerably worse. This suggests that the main contribution to 604

the predictive capacity actually stems from the readout layer and 605

also indicates a potential lack of locality properties. 606

To further validate the above arguments, we investigated the 607

effect of extending the local models with a readout layer, i.e. con- 608

verting the local regression models to their global counterparts. 609

We found that using the readout layer significantly improved 610

the predictive performance for all cases (right three columns of 611

Table VI). 612

One could argue that the improvement is due to the increased 613

number of parameters, which did indeed approximately double 614

(Table VII). However, comparing the performance of the two 615

sets of global models, the difference seems to be marginal, 616
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TABLE VII
NUMBER OF PARAMETERS FOR LOCAL AND EXTENDED GLOBAL REGRESSION GNN MODELS (FIXED AND VARYING TOPOLOGY)

TABLE VIII
BCE STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) OF THE TEST SETS FOR GLOBAL CLASSIFICATION MODELS (FIXED TOPOLOGY)

highlighting again the utility of the fully connected component617

and confirming our suspicion of a lack of locality within this618

problem.619

Finally, we also investigated the utility of using the nodal ad-620

mittance matrix to express electrical distances within the power621

grid – i.e. setting k = 1 in (11) –, rather than the simple binary622

adjacency matrix (k = 0). For this inherently more sophisticated623

approach, the results were in fact fairly consistent to those with624

k = 0 (a table summarising the MSE statistics for such models625

can be found in the Supplementary Materials). This is again626

in accordance with our suspicion that locality between input627

and output variables for this set of problems is rather limited,628

hence even more sophisticated measures of distance still cannot629

improve the performance of the GNNs.630

2) Classification: In principle, the binding status of con-631

straints could be predicted as nodal and edge features within632

a GNN framework. However, based on our findings for the633

regression experiments (i.e. that the global strategy significantly634

outperforms the local one), we treated constraints only as global635

variables. Classification performance is reported in terms of636

statistics of BCE of the test set, again based on 10 independent637

runs (Table VIII). Additional tables concerning the number of638

parameters as well as the training time for each model can be639

found in the Supplementary Materials.640

Here, the single-layer FCNN was observed to be even more641

dominant relative to the regression case. Interestingly, for larger642

grids, it even outperforms the three-layer FCNN, which could 643

be suffering from over-fitting as a consequence of increased 644

flexibility. In general, we reach a similar conclusion as in the 645

global regression setting, whereby the performance enhance- 646

ments of the GNN classifiers are marginal respective to their 647

practicality and computational limitations. CHC and SC mod- 648

els perform similarly, but CHC remains the cheaper option 649

with respect to the training time. Note that GAT was excluded 650

from these experiments since it had already shown weak per- 651

formance for the regression case relative to the other GNN 652

models. 653

Although for brevity we only present the test set loss, we 654

also note that we observed a greater precision than recall in 655

virtually every instance. This implies that the BCE objective 656

is more sensitive to false positives. In combination with the 657

iterative feasibility test, which is more sensitive to false neg- 658

ative predictions, this can result in a significant increase in the 659

computational cost of obtaining solutions [22]. In order to fix 660

this misalignment, one could either use a weighted BCE (with 661

appropriate weights for the corresponding terms) or a meta-loss 662

objective function [22] [32]. 663

C. Varying Topology 664

We now focus our analysis toward the predictive performance 665

of NN models trained (and tested) using data derived from power 666
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TABLE IX
MSE STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) OF THE TEST SETS FOR GLOBAL REGRESSION MODELS WITH VARYING TOPOLOGY

TABLE X
MSE STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) OF THE TEST SETS FOR LOCAL AND EXTENDED GLOBAL REGRESSION GNN MODELS

(VARYING TOPOLOGY)

grids of size 24 – 588 with varying topology. In these experi-667

ments, we modeled the N−1 line contingency and samples for a668

given grid differed not only in their input grid parameters but also669

in their topology. For FCNN and CNN models, we used only grid670

parameters as inputs to predict the corresponding quantities of671

regression and classification, similarly to the fixed topology. We672

note that in theory, the input vector could be extended to include673

topological information, but it is rather cumbersome due to the674

quadratic scaling of the weighted adjacency matrix with system675

size. For GNN models, however, the change in the topology can676

be naturally taken into account by passing the graph information677

of the sample along with the grid parameters. For the regression678

and classification approaches we have: NNreg
θ (xi,Gi) = ŷ∗i and679

NNclf
θ (xi,Gi) = Âi, where xi and Gi are the grid parameter680

vector and topology of the i-th sample, respectively.681

1) Regression: We begin our discussion again by evaluating682

the global regression models (Table IX). As expected, due to683

the larger effective parameter space, the regression performance684

using samples with varying topology decreases when compared685

to those with fixed topology for all cases and architectures (c.f.686

Table III). A significant difference is that the best GNN models687

– CHC in most cases – outperforms both the single-layer and688

even the three-layer FCNN models (and CNN models too). This689

is resultant of the fact that in these models, any change in the690

network topology is ignored, whilst in the GNN architectures it is691

considered explicitly. This is a promising finding for applications692

of GNN models for predicting solutions of more sophisticated693

OPF problems including contingencies.694

Interestingly, further investigations revealed that locality 695

properties still play a marginal role in the predictive performance 696

of GNNs: as for the fixed topology cases, local GNN models 697

have a significantly weaker performance, which is subsequently 698

restored by attaching a readout layer (Table X). 699

2) Classification: For the classification models, we consid- 700

ered again only the global case (Table XI). We note that due to the 701

higher number of non-trivial constraints, the size of the NN mod- 702

els with varying topology differs from those with fixed topology 703

(details are shown in the Supplementary Materials). Therefore, 704

unlike in the case of regression, we cannot compare directly the 705

BCE statistics of experiments with fixed and varying topology. 706

Nevertheless, in general, we found a similar trend to the global 707

regression, i.e. the best performing GNN model (again, most 708

often CHC) consistently outperforms the single-layer FCNN, 709

the CNN and even the three-layer FCNN models. This means 710

that applying GNN models is preferable over a significantly 711

larger FCNN architecture for both OPF related regression and 712

classification based problems with varying topology. 713

D. Locality Properties 714

Experimental results for the NN models indicated that the 715

general assumption of locality may not be appropriate for this 716

problem, i.e. there is only a weak – or no existence of – locality 717

between load inputs and generator set-point outputs. To explore 718

this relationship further, we carried out a sensitivity analysis that 719

directly measures locality: for each synthetic grid, we iteratively 720
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Fig. 5. Analysis of locality properties for each synthetic grid. Left and right panels show the average absolute value of the relative change (with two-sided
95% confidence intervals) in voltage magnitude (green), injected active power (orange) and locational marginal prices (purple), respectively, as a function of the
topological distance from the perturbed load. Center panels show the histogram of generators with respect to the neighbourhood order from loads.

TABLE XI
BCE STATISTICS (MEAN AND TWO-SIDED 95% CONFIDENCE INTERVALS) OF THE TEST SETS FOR GLOBAL CLASSIFICATION MODELS WITH VARYING TOPOLOGY
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perturbed each active load of 100 configurations by 1% and721

recorded the absolute value of the relative change in voltage mag-722

nitude and active power injection of each generator (i.e. |dV j
m

dP i
l

|723

and |dP j
g

dP i
l

|, where P i
l are the active loads with i = 1, . . . , |L|;724

and V j
m and P j

g are the voltage magnitude and injected active725

power of generators with j = 1, . . . , |G|), as a function of neigh-726

bourhood order (i.e. the topological distance from the perturbed727

load). If a grid were to exhibit locality properties, one would728

expect a distinct negative correlation between the average of729

these quantities and the respective distance from the perturbed730

load within the graph domain.731

The results of the sensitivity analysis are shown in the left732

panels of Fig. 5. Although there are certain cases where either733

the voltage magnitude or active power injection show a weak734

anti-correlation with the topological distance, in general we735

found little evidence that the topology of the network influences736

the correlation between input and output variables. Plotting the737

distribution of generators as a function of distance from the738

perturbed load (middle panels of Fig. 5) suggests that this result739

should be of no surprise: as the system size increases, so does the740

average distance between the perturbed load and the generators741

in the system, which decreases the likelihood that nearby gener-742

ators will balance corresponding demand (for apparent physical743

reasons such as generator capacity, line congestion etc.).744

Finally, we also explored the existence of possible locality745

between grid inputs and the LMPs, which are functions of the746

duals (shadow prices) [51]. If a stronger locality property were747

to exist here this would be promising for using GNN models to748

predict electricity prices even with fixed topology [52]. However,749

as shown in the right panels of Fig. 5, we found no evidence of750

locality for the LMP values either.751

IV. CONCLUSION752

With the potential to shift the entire computational effort753

to offline training, machine learning assisted OPF has become754

an increasingly interesting research direction. Neural network755

based approaches are particularly promising as they can ef-756

fectively model complex non-linear relationships between grid757

parameters and primal or dual variables of the underlying OPF758

problem.759

Although most related works have applied fully connected760

neural networks so far, these networks scale relatively poorly761

with system size. Therefore, incorporating topological informa-762

tion of the electricity grid into the inductive bias of some graph763

neural network is a sensible step towards reducing the number764

of NN parameters.765

In this paper, we first provided a general framework of the766

most widely used end-to-end and hybrid techniques and showed767

that they can be considered as estimators of the OPF operator or768

function. In this sense, our framework could be readily extended769

to more sophisticated OPF problems, such as consideration770

of unit commitment or security constraints, as well as direct771

prediction of derived market signals (e.g. LMPs).772

We then presented a systematic comparison of several NN773

architectures including FCNN, CNN and GNN models. We774

found that for systems with fixed topology, an FCNN model has 775

a comparable or even better predictive performance than global 776

CNN and GNN models with similar number of parameters. The 777

moderate performance of the CNN model can be explained 778

by the fact that it carries out convolutions in Euclidean space 779

(instead of the graph domain). We also identified that in the 780

case of global GNN models, the readout layer plays a key role: 781

constructing local models by removing their readout layer led 782

to a significant decline in the predictive performance. 783

The results with fixed topology indicated that the required 784

assumption of locality between grid parameters (inputs) and 785

generator set-points (outputs) might not hold. To validate the 786

findings of the NN experiments, by carrying out a sensitivity 787

analysis we showed that locality properties are indeed scarce 788

between grid parameters and primal variables of the OPF. Ad- 789

ditionally, we found a similar lack of locality between grid 790

parameters and LMPs. 791

Finally, we also performed a systematic comparison of NN 792

models using varying topology of the samples. In these ex- 793

periments, we modeled the N−1 contingency of transmission 794

lines in both the training and test sets. We found that for such 795

cases, global GNN architectures outperform FCNN and CNN 796

models for both regression and classification based problems. 797

The reason is that although locality properties still play a limited 798

role, GNN models could take the changes of the topology into 799

account, which were completely neglected amongst FCNN and 800

CNN models in our setup. Although it might be possible to ex- 801

tend FCNN and CNN models’ input by topology related features, 802

it is definitely less straightforward than for GNN models, where 803

this information is accounted for naturally. This property of the 804

GNN architectures therefore makes these models promising for 805

realistic applications, especially for security constrained OPF 806

problems. 807
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